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Abstract
We report a theoretical study of the spectral statistics of a quasi-one-dimensional
surface superlattice in perpendicularly applied magnetic fields. The energy-
level-spacing distribution and the Dyson–Mehta �3 statistic of the magnetic
band structure of the system are calculated. The calculations show that for
the system with inversion symmetry, the magnetic band structure at the wave
vector k = 0 is well described by the statistic derived by a superposition of
two independent Gaussian orthogonal ensemble (GOE) statistics. This result
is consistent with the fact that the system shows a false time-reversal violation
and a real-space symmetry. The calculations show also that when the wave
vector k is moved away from the k = 0 point, the statistical properties of the
magnetic band structure are excellently described by the GOE statistics. The
GOE statistics are also found in the magnetic band structure when the inversion
symmetry is removed from the system.

1. Introduction

The recently developed field of physics named quantum chaos [1] has its origin in studies of
spectral statistics of quantum systems whose corresponding classical dynamics exhibits chaos.
The idea and methods of quantum chaos are quite general and can be applied to a broad range
of quantum systems including, e.g., atoms [2–4], nuclei [5, 6], electron billiards [7, 8], as well
as classical wave-mechanical systems such as vibrating plates [9, 10] and microwave cavities
[11, 12].

Recently, spectral statistics has been used in the description of electronic band structures
of periodic systems [13–17]. It has been shown [14] that around the centre of mass (CM)
of an irreducible part of the Brillouin zone (BZ) the band structure of Si crystal shows the
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Gaussian orthogonal ensemble (GOE) statistics, while the band structure of AlxGa1−xAs
alloy shows the Gaussian unitary ensemble (GUE) statistics. However, for both the Si crystal
and the AlxGa1−xAs alloy the spectral statistics of the band structures around a symmetric
point in the BZ show deviations from their corresponding Gaussian ensemble statistics. In
particular, it is shown that for a small value of the fraction x, the AlxGa1−xAs band structure
at the � point shows Poisson-like statistics. The spectral statistics were also analysed for the
magnetic band structures of two-dimensional (2D) as well as one-dimensional (1D) surface
periodic systems (i.e., surface superlattices) in perpendicularly applied magnetic fields. For
the 2D surface superlattices [15], the statistics of the magnetic band structure is found to
show similar properties to the three-dimensional (3D) Si crystal and AlxGa1−xAs alloy: at a
sufficiently strong magnetic field, the magnetic band structure of a 2D surface superlattice at
the magnetic wave vector away from any point of symmetry in the magnetic BZ (MBZ) can
be well described by the GUE statistics, while the magnetic band structure along symmetric
lines in the MBZ can be well described by GOE statistics and the magnetic band structure at
the points of higher symmetry (�, A, and M) shows Poisson-like statistics. For a 1D surface
superlattice with inversion symmetry [16, 17], it was found that for the wave vector k not in the
close vicinity of a symmetric point (e.g., the k = 0 point) the magnetic band structure shows
the GOE statistics. It was also found that the band structure of the 1D surface superlattice
deviates from the GOE statistics when the wave vector k is moved towards a symmetric point.
However, the spectral statistics has not been analysed for the system exactly at a symmetric
k-point.

In this work, we make a detailed study of the spectral statistics for 1D surface superlattices
in perpendicularly applied magnetic fields at the k = 0 point. An interesting result found
in this study is that the spectra of the systems at this point show the statistics derived by a
superposition of two independent GOE statistics. By contrast, we note that the results found in
references [14, 15] indicate that the spectra of the 2D surface superlattices in magnetic fields
and of the 3D AlxGa1−xAs (x < 0.1) system at the corresponding highly symmetric points in
the MBZ or BZ show Poisson-like statistics. The paper is organized as follows. In section 2,
we describe the model and its symmetric properties. Also in this section we briefly describe
the theoretical framework of quantum chaos used in this study. In section 3, we present our
numerical results and discuss them in terms of the symmetry of the system. Finally, section 4
contains a summary and conclusions.

2. Model and theory

The 1D periodic system considered in this work is a square, antidot (repulsive potential)
lattice implanted in the x − y plane with a period a in a wide channel of width w. The
potential of the antidot lattice was assumed to be

V (x, y) =
{
V0{cos[πx/a] cos[π(y − y0)/a]}2β if |y| � w/2
∞ if |y| > w/2 (1)

where |x| < ∞, V0 and integer β control the strength and steepness of the antidot potential,
while |y0| � a/2 controls the peak positions of the antidot potential along the transverse
y-direction. In the present work, the assumption that V0 = 1 eV and β = 10 was made. The
lattice spacing was taken to be a = 100 nm and the channel widthw = 400 nm, so the antidot
potential has four periods along the transverse y-direction.
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The motion of a spinless electron in the system in the magnetic field �B = (0, 0, B) is
described by the Hamiltonian

H = 1

2m∗ [ �P + e �A(x, y)]2 + V (x, y) (2)

where m∗ is the effective mass of the electron and �A = (−By, 0, 0) is the vector potential in
the Landau gauge. The assumption ofm∗ = 0.067me, appropriate for an AlxGa1−xAs/GaAs
system, was made when the numerical calculations for this work were performed.

The translation invariance of the Hamiltonian allows us to reduce the quantum-mechanical
problem to the study of the electron motion in a single unit cell. Using Bloch’s theorem, the
Schrödinger equation can be written as

Hkuk(x, y) = E(k)uk(x, y) (3)

where k is the Bloch wave vector in the x-direction, uk(x + a, y) = uk(x, y) is the periodic
part of the electron wave function, and the reduced HamiltonianHk is

Hk = − h̄2

2m∗

(
∂2

∂x2 +
∂2

∂y2

)
− ih̄2

m∗

(
k − eBy

h̄

)
∂

∂x
+
h̄2

2m∗

(
k − eBy

h̄

)2

+ V (x, y). (4)

Equation (3) with the Hamiltonian given in equation (4) was solved numerically for a given
wave vector k and magnetic field B using the method described in reference [16]. The
conventional band structure of the system can be obtained by plotting the eigenvaluesEn(k, B)
(with n being the band index) as a function of the wave vector k for a given value of B, while
the magnetic band structure of the system is obtained by presenting the calculated eigenvalues
En(k, B) as a function of B at a given k.

The Hamiltonian Hk presented in equation (4) has certain symmetries. The spectral
statistical properties are closely related to the symmetries of the system. Knowing these
symmetries is, therefore, very necessary for understanding the results presented in the next
section. Below, we describe symmetric properties of the system in some selected cases.

(a) The case of k = 0, B = 0, and y0 = 0: the Hamiltonian Hk is, geometrically, highly
symmetric in this case. It has the symmetry of inversion I (i.e., (x, y) → (−x,−y)) and
the symmetries of reflections Rx (i.e., x → −x) and Ry (i.e., y → −y). Solutions to the
Schrödinger equation (3) can therefore be divided into four different classes according to
whether or not they are even or odd under Rx and Ry . In addition, Hk is also invariant
under the time-reversal (T ) operation.

(b) The case of k = 0, B = 0, and y0 
= 0 or ±a/2: the geometrical symmetry is reduced in
this case and Hk is geometrically symmetric only under Rx. Hk is still invariant under T.

(c) The case of k = 0, B 
= 0, and y0 = 0:Hk is geometrically symmetric only under I in
this case. In addition, a finite value of B breaks the T-symmetry in Hk. However, the
Hamiltonian Hk is invariant under anti-unitary operation of TRx or TRy; that is, it shows
false T-violation.

(d) The case of k = 0, B 
= 0, and y0 
= 0 or ±a/2: the Hamiltonian Hk is invariant only
under anti-unitary operation of TRx.

(e) The case of k 
= 0 or ±π/a,B = 0, and y0 = 0:Hk is geometrically symmetric only
under Ry and has no T-symmetry. However, it is still invariant under TRx.

(f) The case of k 
= 0 or ±π/a,B 
= 0, and y0 = 0: the only symmetry seen in this case is
that Hk is invariant under TRx.

The spectral statistics for the system in some of these cases listed above have been studied
previously [16]. In the present work, we shall only study the spectral statistics for the system in
the cases of (c), (d), and (f ). Among the three cases, only in case (c) has Hk got a geometrical
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symmetry—namely, it is invariant under the operation of inversion I. However, in all three
cases, Hk is invariant under anti-unitary operation of TRx, i.e., it shows a false T-violation.
We shall make a comparison between the spectral statistics obtained for the three cases and
discuss their common features and differences in terms of the symmetries of Hk.

The two most frequently studied characteristics of spectral statistics are the level-spacing
distribution P(s), where s is the nearest-neighbour level spacing (hereafter we will always
express the energy in units of mean level spacing), and the Dyson–Mehta statistic �3. P(s)
measures the level repulsion; it is normalized. �3 measures the rigidity of the spectrum; it
is given by the variance of the number of energy eigenvalues found in an energy interval of
length L:

�3(L) = 1

L

〈
min
a,b

∫ Ē+L/2

Ē−L/2
dE [N(E)− aE − b]2

〉
(5)

where N(E ) is the number of energy levels below the energy E and the angle brackets indicate
the statistical average. It is well known that in terms of random-matrix theory (RMT), both
P(s) and�3 can be approached using analytical expressions (see, for example, reference [18]
for a detailed discussion of the approach and reference [16] for the details of the expressions
for various ensembles).

It should be emphasized again that at k = 0 or ±π/a, the Hamiltonian Hk in equation (4)
with y0 = 0 (cf. equation (1)) is invariant under the inversion I (i.e., (x, y)→ (−x,−y)) and
the energy levels can be degenerate. Theoretically, we can always group these energy levels
into two sets according to the parity of their wave functions with respect to the inversion. This
procedure corresponds to transforming the Hamiltonian matrix Hk into a two-block diagonal
matrix. Each block corresponds to a submatrix which, when diagonalized, gives one set of
energy levels, and the two submatrices are mutually independent, but still show the false
T-violation, like the original Hamiltonian Hk. However, in experiment it is often the case that
the two sets of energy levels cannot be separately measured. One would then like to know
what the statistical properties of the combined system are.

Following the arguments given by Gurevich and Pevsner [19], it can be shown that the
level-spacing distribution, P2GOE(s), of the system resulting from the combination of two
mutually independent sequences with the GOE level-spacing distribution, PGOE(s), can be
approached by using

P2GOE(s) = 2
d

ds

[
"GOE(s)

d

ds
"GOE(s)

]
(6)

where

"GOE(s) = 1

2

∫ ∞

s/2
(2t − s)PGOE(t) dt . (7)

Inserting the expression for PGOE(s) into the above equation gives an analytical expression
for the level-spacing distribution of the combined system:

P2GOE(s) = 1

2
exp

(
−π

8
s2

)
+
π

8
s exp

(
− π

16
s2

) [
1 −

∫ s/2

0
exp

(
−π

4
t2

)
dt

]
. (8)

It is easy to verify that P2GOE(0) = 1/2 and dP2GOE(0)/ds = (1/4) dPGOE(0)/ds = π/8.
Since the Dyson–Mehta statistic �3 is a quadratic functional of the level density, its value
for the combined system, �3,2GOE(L), is simply additive for the two mutually independent
spectral sequences with the GOE statistics �3,GOE. Thus

�3,2GOE(L) = 2�3,GOE(L/2). (9)
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From now on, we will call the statistics derived by a superposition of two independent GOE
statistics the double-GOE statistics. An analytical expression for the double-GUE statistics,
derived from a superposition of two independent GUE statistics, can be found in reference [20].

3. Numerical results and discussion

The numerical calculations of these statistical characteristics for the surface superlattice
considered in this work were carried out as follows. We first generated magnetic band
structures for the system at various given k-values. In each magnetic band structure, the
energy eigenvalues for a finite number of magnetic field values were taken. The spectra were
then unfolded using a standard procedure described in reference [21] (see also reference [16]).
The statistical average was taken over different values of the magnetic field and over a large
number of energy bands.

Before we present our numerical results, we would like to note that when evaluating the
spectral statistics the average needs to be taken over an appropriate range of magnetic field
values. As we discussed above, the Hamiltonian Hk at B = 0 can have more symmetries than
the Hamiltonian at B 
= 0 (cf. equation (4)). Thus, in the calculation of the spectral statistics
for the magnetic band structure at B 
= 0, we need to take the statistical average over the
calculations at the magnetic fields that are strong enough to suppress the traces of the extra
symmetries in the spectra. We have found numerically that a magnetic field of B = 0.2 T is
sufficient for the suppression. However, we should also avoid the statistical average over the
calculations at very high magnetic fields. This is because electrons tend to be localized at high
magnetic field and do not ‘see’ very well the precise profile of the antidot potential when the
magnetic field becomes higher than a critical value Bc. Semiclassically, the critical field Bc
can be approximately determined by setting the cyclotron radius $c of the electrons equal to
the lattice constant a. Note that Bc depends on the energy of the electrons and increases with
increase of the energy. Note also that good statistics require that $c be sufficiently larger than
the lattice constant a. In the present work, we have excluded the eigenvalues in the lowest
200 magnetic bands and have calculated the spectral statistics by taking the average over the
magnetic band energies evaluated for the magnetic field values in the range 0.3–1.2 T. Our
results of the calculations are presented in figure 1 to figure 6.

Figure 1 shows a portion of the magnetic band structure calculated for k = 0 and y0 = 0.
It can be clearly seen that the spectral complexity is well developed in the magnetic band
structure, except that there is clear evidence of level degeneracy in the sense that some lines tend
to pair up together and move side by side as the magnetic field increases. This degeneracy effect
correctly reflects the symmetry of the Hamiltonian Hk under inversion I in the case of k = 0,
B 
= 0, and y0 = 0. Figure 2 shows our numerical results on the spectral statistics extracted
from a set of the energy eigenvalues of the magnetic band structure at k = 0 and y0 = 0
with band index n = 200 to 600 (corresponding to an energy range in about 40 to 120 meV)
computed for 91 equally spaced magnetic field values in the range 0.3 to 1.2 T. It is clear
that the spectral statistics deviates strongly from the GOE and GUE distributions in this case.
However, equations (8) and (9) provide an excellent description for the statistics of the energy
spectra. This result is consistent with the fact that the Hamiltonian Hk in this case shows a
false T-violation and the geometrical symmetry under I. The false T-violation suffices to lead
the spectra to the GOE statistics [20], while the combination of the false T-violation and the
inversion symmetry should lead the spectra to the double-GOE statistics (see the discussion
leading to equations (8) and (9)).

At this point, we would like to note that the spectral statistics have also been analysed for
the band structures of a 3D AlxGa1−xAs alloy and a 2D surface superlattice at the symmetrical
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Figure 1. A portion of the magnetic band structure of the Q1D surface superlattice at k = 0 and
y0 = 0.
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Figure 2. The spectral statistics for the magnetic band structure of the Q1D surface superlattice as
shown in figure 1 for the case of k = 0 and y0 = 0. The data (indicated by solid dots with error
bars) were extracted from the energy eigenvalues of 401 energy bands with the band index n = 200
to 600 and 91 equally spaced magnetic field values in the range B = 0.3 to 1.2 T. (a) shows the
band-spacing distribution P(s); (b) shows the Dyson–Mehta statistic �3(L). The short-dashed,
long-dashed, and dash–dotted curves give the theoretical predictions for the Poisson, GOE, and
GUE statistics, respectively. The solid curves show the predictions for the system obtained from
the superposition of two mutually independent sequences with the GOE statistics (equations (8)
and (9)).

point �k = 0 in the BZ or MBZ [14, 15]. These analyses indicate that the spectra of the two
periodic systems at the symmetrical point �k = 0 tend to show Poisson-like statistics (note that
for the 2D surface superlattice the �3(L) statistic even shows a logarithmic increase [15]).
Clearly, the result of our analysis on the spectral statistics for the 1D surface superlattice at the
symmetric point k = 0 is different from these early analyses. We should, however, emphasize
that our result is consistent with the fact that the Hamiltonian Hk in the case considered shows
a false T-violation and the inversion symmetry.
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Figure 3. A portion of the magnetic band structure of the Q1D surface superlattice at k = 0.5π/a
and y0 = 0.
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Figure 4. Spectral statistics for the magnetic band structure of the Q1D surface superlattice as
shown in figure 3 for the case of k = 0.5π/a and y0 = 0. The data (indicated by solid dots with
error bars) were extracted from the energy eigenvalues of 401 energy bands with the band index
n = 200 to 600 and 91 equally spaced magnetic field values in the rangeB = 0.3 to 1.2 T. (a) shows
the band-spacing distribution P(s); (b) shows the Dyson–Mehta statistic �3(L). The short-dashed,
long-dashed, and dash–dotted curves give the theoretical predictions for the Poisson, GOE, and
GUE statistics, respectively. The solid curves show the predictions for the system obtained from
the superposition of two mutually independent sequences with the GOE statistics.

When we break the inversion symmetry, we should remove the degeneracy from the
energy spectra of our 1D periodic systems and expect to observe that the spectra move from
the double-GOE to the GOE statistics. The symmetry breaking can be realized in our system
either by making the wave vector k finite, but not equal to ±π/a (i.e., case (f ) in the previous
section) or by shifting y0 away from zero and from multiples of a/2 (i.e., case (d) in the
previous section). Figure 3 shows a portion of the magnetic band structure calculated for
k = 0.5π/a and y0 = 0. When comparing this figure with figure 1, one seems to see that the
levels cover the energy space more densely in this case than in that of figure 1. In fact, this
is not the case. The energy spectra in the two cases have approximately equal averaged level
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Figure 5. A portion of the magnetic band structure of the Q1D surface superlattice at k = 0 and
y0 = 0.25 a (25 nm).
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Figure 6. Spectral statistics for the magnetic band structure of the Q1D surface superlattice as
shown in figure 5 for the case of k = 0 and y0 = 0.25 a. The data (indicated by solid dots with
error bars) were extracted from the energy eigenvalues of 401 energy bands with the band index
n = 200 to 600 and 91 equally spaced magnetic field values in the rangeB = 0.3 to 1.2 T. (a) shows
the band-spacing distribution P(s); (b) shows the Dyson–Mehta statistic �3(L). The short-dashed,
long-dashed, and dash–dotted curves give the theoretical predictions for the Poisson, GOE, and
GUE statistics, respectively. The solid curves show the predictions for the system obtained from
the superposition of two mutually independent sequences with the GOE statistics.

densities in the energy range that we considered. This is because possible level degeneracy
exists in the case considered in figure 1. Figure 4 shows the numerical results on the spectral
statistics extracted from a set of the energy eigenvalues in the magnetic energy bands with band
index n = 200 to 600 (corresponding to an energy range in about 40 to 120 meV) computed
for 91 magnetic field values (equally spaced in the range 0.3 to 1.2 T) at k = 0.5π/a and
y0 = 0. Notice that a good agreement with the GOE statistics is found, as we expected.

Figure 5 shows a portion of the magnetic band structure calculated for k = 0 and
y0 = a/4. Here, an averaged level density similar to that in figure 3 is seen and the spectra
show no degeneracy. However, some clean, parallel features are clearly visible in the calculated
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magnetic band structure shown in figure 5. We expect that these clean features should have
effects on the spectral statistics. Figure 6 shows the numerical results on the spectral statistics
extracted from a set of the energy eigenvalues in the magnetic energy bands with band index
n = 200 to 600 (corresponding to an energy range of about 40 to 120 meV) computed for
91 magnetic field values (equally spaced in the range 0.3 to 1.2 T) at k = 0 and y0 = a/4.
Although for P(s) a good GOE statistic is found here, for �3(L) deviation from the GOE
prediction is clearly visible at large L. The deviation appears as a result of existing clean
features in the spectra (see figure 5).

4. Summary and conclusions

We have studied symmetry and spectral properties of a quasi-one-dimensional superlattice in
perpendicularly applied magnetic fields. Two statistical characteristics, namely, the energy-
level-spacing distribution and the Dyson–Mehta �3 statistic, of the energy band structure
of the system have been calculated. Time-reversal (T-) symmetry is broken in the system.
However, the system is invariant under the anti-unitary combination of symmetric operations
which includes T, leading to what is called false T-violation. For the wave vector k not in the
close vicinity of a symmetrical point in k-space, the statistical properties of the magnetic band
structure are found to be described by the statistics of the GOE. This result is in agreement
with the prediction that the false T-violation suffices to give the energy spectra the properties
of the GOE, instead of those of the GUE. However, the magnetic band structure is found to
deviate from the GOE statistics at k = 0, if the system is invariant under the inversion. We
have shown that the magnetic band structure in this case is well described by the double-GOE
statistics, derived for systems that possess two mutually independent sets of energy levels of
the same density with the GOE statistics.

Acknowledgments

This work was supported by the Swedish Research Council for Engineering Sciences
(VR/TFR) and the Swedish Foundation for Strategic Research (SSF). One of us (HQX)
gratefully acknowledges the support of K C Wong Education Foundation, Hong Kong.

References

[1] Haake F 1992 Quantum Signatures of Chaos (Berlin: Springer)
[2] Camarda H S and Georgopulos P D 1983 Phys. Rev. Lett. 50 492
[3] Wintgen D, Holle A, Wiebusch G, Main J, Friedrich H and Welge K H 1986 J. Phy. B: At. Mol. Phys. 19 L557
[4] Karremans K, Vassen W and Hogervorst W 1998 Phys. Rev. Lett. 81 4843
[5] Haq R U, Pandey A and Bohigas O 1982 Phys. Rev. Lett. 48 1086
[6] Bohigas O, Haq R U and Pandey A 1985 Phys. Rev. Lett. 54 1645
[7] Bohigas O, Giannoni M J and Schmit C 1984 Phys. Rev. Lett. 52 1
[8] Ji Z-L and Berggren K-F 1995 Phys. Rev. B 52 1745
[9] Ellegaard C, Guhr T, Lindemann K, Lorensen H Q, Nygård J and Oxborrow M 1995 Phys. Rev. Lett. 75 1546

[10] Bertelsen P, Ellegaard C and Hugues E 2000 Eur. Phys. J. B 15 87
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